If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-18b+65=0
a = 1; b = -18; c = +65;
Δ = b2-4ac
Δ = -182-4·1·65
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8}{2*1}=\frac{10}{2} =5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8}{2*1}=\frac{26}{2} =13 $
| 6(p-2)-3(p-1)=p+1 | | -5u+47=6(u-5) | | 32x-4+8=2x+26 | | 13y+7=6y+561 | | 5x+7-9=2x-14 | | x/3+11=-9 | | 7(4+x)=74 | | 34x+29=5x | | -2(3y+7)=4 | | 18q−4q+6q=20 | | 2w+5=2w+5 | | (3a+7)=(2a-5) | | 2x2=-5x+7 | | 65=0.75x | | 3/11=9/x | | 65=20+0.75x | | 11n-4n+5n-16n=20 | | x+3.6=4.75 | | -17x-9=25 | | 6x^2-29=3x+13x+8x^2 | | -3.1=16.1+w/6 | | -13p−9p+15p−-11p+-10p=-12 | | -23=-u/3 | | 3x+7=3x+19 | | 8a-7a=14 | | 6x-8=-14 | | 90=20x-50 | | −7x−31=5x−7 | | -13=3+4j | | 9w-7w=28 | | h+13-3=-3 | | 5x^2+3x+9=-10x+3 |